96=y^2+6

Simple and best practice solution for 96=y^2+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 96=y^2+6 equation:



96=y^2+6
We move all terms to the left:
96-(y^2+6)=0
We get rid of parentheses
-y^2-6+96=0
We add all the numbers together, and all the variables
-1y^2+90=0
a = -1; b = 0; c = +90;
Δ = b2-4ac
Δ = 02-4·(-1)·90
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{10}}{2*-1}=\frac{0-6\sqrt{10}}{-2} =-\frac{6\sqrt{10}}{-2} =-\frac{3\sqrt{10}}{-1} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{10}}{2*-1}=\frac{0+6\sqrt{10}}{-2} =\frac{6\sqrt{10}}{-2} =\frac{3\sqrt{10}}{-1} $

See similar equations:

| 96=y2+6 | | (15x+50)+25=180 | | 3(x+8)=4(x-5) | | 2x2+5x+6=0 | | 9(r-√r)=-3√r-5r | | 7u-9/5=24 | | (90+8y)+34=180 | | 2(2z-2)=7(z-2 | | (X2-6x+9)-(x2-4x+4)=25 | | 16^x+1024=5x4^{x+2} | | 1/2(5-2h)=2h | | 1/8=1/8+r | | 0.81=4x-0.39 | | -12x=16x-20 | | 2/3(x)=280 | | x+2/3(x)=280 | | (x+2)(2x+4)=(x-4)(2x-3)+53 | | (15x+.8)+(6x-18)=180 | | a/5+25=50 | | (15x+1.25)+(6x-18)=180 | | 3(x+2)+2=4x+29 | | 5m+9=3m-11 | | 2x+3x=x+60 | | 61x^2+1=12x | | 7d-6-3d=18 | | 3(x+)-2(x-1)=5(x-5) | | 12=5x^2+4x | | 46+8x+-1=18x+5 | | 8-5x=4x-4 | | 5b+4-2b=16 | | (3x+2x)+(20-8)=92 | | w/4-14=22 |

Equations solver categories